Selzler Computing DRAFT “Who Calls Who”

Who calls me? 2 Me = Who do I call?

Recently, and long overdue, I completed converting a large CW5.5 veterinary application
to a multi-DLL CW6.3 app. The CW35.5 app contained 927 procedures in 42 modules.
Redeploying these procedures to DLLs and keeping straight “who called who” such that
none of the DLLs had circular references looked like a lot to keep straight.

The three programs presented in this paper were created to help verify that I had done
that. These programs weren’t intended to be an end in themselves but as this exercise
unfolded and these tools grew it became apparent that they may be useful to the Clarion
community. The newsgroups and Clarion Magazine have been a great resource for me
and this paper is my attempt to give something back that someone might find useful.

A Little Background for Perspective

After much trial and error I ultimately settled on nine DLLs. This paper doesn’t address
that exercise but rather the tools that I wrote to help verify that the procedures were
deployed to an appropriate DLL. They enabled me to quickly find where some procedure
was placed if testing the new restructured app presented some illegal function that might
indicate that a procedure would be better placed elsewhere. Internal development
documentation is likely to be enhanced as well.

EX Exploring - C:A_Selzler\¥et2008%1 3M ay\Statemenis
File Edit “iew Go Favoites Tools Help
Folders X | | MName | Slzel Type | Modified
#1-C Verbatim Star_n_Go] |F#] vaw.apn 2043KB APF File B/27/0810:31 AM
{27 Vet 2002 Documents &) AppProc exe 453KB Application E/18/081:31 PM
- Wet2003 & CLW2TPS exe 805KE Application B/18/08 1:25 PM
- Wet2006 @ ProcCal.exe 20KB Application E/A18/081:35 PM
=0 Wetzoog @ w3, dll TI0KE Application Extension B/27/08 10:30 AM
BT 13y] vEM.BPP 2059E BPF File £/21/08 3:47 PM
Wy B 2] Sefeler. ch KB CLW File 2/26/04 6:20 &M
3 2Phun_Teat SR B2KE CLW File
” {3 Codes %VBMUUT.CIW EKB CLW File The clw modules
-0 Funations 2] vEMO02.ch B13KE CLW File .
Folders_ g Global (2] vEM003. clw that will be parsed
containing 232 Main = %VBMDDS.CIW 55KB CLW File for procedures.
{38 Primar 2] vBMO0E. chw 172KB CLW File
each of the < < = Hemoi] Em.exp 4KB EXP File E7Z7708 T30 AM
DLL apps. B Reports Calendatico 1KE lcon Resouce 10/10/95 33 PM
427 |Statements + Smchok.ico 1KE lcon Resource B/28/96 11:52 AM
1 System] WD inc KB INC File B/27/08 10:29 &M
O LT Ut] VEmDOZ inc KB INC File 6/27/08 10:30 AM
£ 2402008 lans] WEmMOD3 ine KB INC File B/27/0810:30 &M
#-0] 27Dec2007] VEmDOS inc KB INC File 6/27/08 10:30 AM
-1 aMay] WEmDOG inc 1KE INC File £/27/08 10:30 AM
B8 Horses 1] vaC lib 4KB LIE File 6/27/08 10:28 AM
R Hoises 8] vEF b KB LIE File B/27/0210:11 AM
-1 My DLL Tool =] 486, lb 125KB LIB File E/27/08 10:08 &M
{2 AppProc a wBM.lib 3KE LIB File B/27/0810:30 A
ChaZtps =] 48R b EKE LI File B/27/0810:22 &M
42 ProcCal 8] vESIb 4KB LIB File B/27/0810:19 AM
-] ZipCode Resources =] va@% b 3KE LIE File B/27/0810:13 &M
B0 Test Edit 8] vEM M 25KB MAP File B/27/0310:30 AM
BHER sFesources] vEM KB Shortout B/27/08 10:30 AM
1 40Tude | = 2KB SHF Fie 6/27/08 10:30 AM
|31 objectls) |7.31ME [Disk fiee space: 3.59GE) | =) My Computer 4

Figure 1 — Explorer View of Development Environment

The app being evaluated will become Vet8.exe so each DLL was named v8 plus a single
letter indicative of the DLL’s functionality. E.g. Statement procedures are placed in the

6 December 2008 DRAFT Page 1 of 14

Selzler Computing DRAFT “Who Calls Who”

v8ML.DLL shown above in Fig 1. This isn’t important to how one may choose to define
the subordinate DLL apps but perhaps will help viewing the screen prints and some of the
discussion in this paper. Each app.DLL produces a “Default Program” clw file that
contains a reference to each module identifying the procedure names in each module.

PROGRAM

INCLUDE('ABERROR.INC"),ONCE
INCLUDE('ABFILE.INC'),ONCE
('ABFUZZY.INC'),ONCE
INCLUDE('ABUTIL.INC'),ONCE
INCLUDE('ERRORS.CLW'),ONCE
INCLUDE('KEYCODES.CLW'),ONCE

MAP /

MODULE('V8S.DLL")) \
BrowseProvider PROCEDURE,DLL !
BrowseSystemDefaults PROCEDURE,DLL ! Modules /
SelectClient_Short PROCEDURE,DLL ! with DLL
Set_mServiceDate_System PROCEDURE(Long),DLL ! (Long) > .

END extension

MODULE('V8X.DLL") are external.
BackupFiles2LocalDisk PROCEDURE,DLL !

END J

I--- Application Global and Exported Procedure Definitions

MODULE('V8M001.CLW") \
Main PROCEDURE !

CLW modules are local.

END

MODULE('V8M002.CLW")
RptStatementAliClients_Alphabetical PROCEDURE(Long) 118p - m:ClientNbr
fStatementOptions FUNCTION(Byte,*Long,*Long,*Byte,*Long),Byte 11p - INI

fConfirmAgeStatementSelections FUNCTION(*Long,*Long,Byte,Long),Byte 16p - CS(60)

... lots more code evaluated ...

As the first program reads this file for procedures and the modules that contained
them, it ultimately will encounter ! Declare’’, below, which indicated that the
remainder of that file was no longer/of interest and it quit.

! Declare functions defined in this DLL
v8M:Init PROCEDURE(<ErrorClass curGlobalErrors>, <INIClass curlNIMgr>)
v8M:Kill PROCEDURE

I Declare init functions defined in a different DLL
MODULE('V8F.DLL")

v8F:Init PROCEDURE(<ErrorClass curGlobalErrors>, <INIClass curlNIMgr>),DLL
v8F:Kill PROCEDURE,DLL
END

... lots more code but of no interest...

Figure 2 — Default Program Code Snippet

In a single app this was would be in the include files. The programs discussed here focus
only on the DLL apps that have already been constructed. I placed each DLL app in its
own folder. This shouldn’t be necessary but because I was breaking up such a big app it
was convenient for me.

6 December 2008 DRAFT Page 2 of 14

Selzler Computing DRAFT “Who Calls Who”

Capture All Procedure Names

Each of the “Default Program” clw and inc files was copied to a working folder:
“_Vet8” to be read by the first of the three programs and capture all of the primary
application procedures into one tps file, Fig 3. The “_” prefix isn’t important except to
alphabetically segregate the folder names in Explorer.

BN Exploring - C:_Selzler\Wet2008\13May'_veld
File Edt “iew Go Favortes Tools Help
Folders X [N I Size | Type [
& Users] |& foc.eve | 450KE Application
L] word Docs Appproc.tps 363KE Clarion TPS data file
E-C Vet2005 &CLW'ZTF’S Ere 805KE Application
B vet2008 local.txt G7KB Text Document
EH] 13May @Ploc[ﬁall.ake 22kB Application
Wl ER B4KE CLW File
£ 2l Test] veF.chw 9EKE CLW File
1 Codes wEM.chw 82KE CLW File
3 Functions V3P cha TI0KE CLW File
1 Global ¥ER.clw BBKE CLW File
38 Main ¥BS.chw BIKE CLW File
3 Primary vl chy 8EKB CLW File
] Remats Wi, ch BIKE CLW File
1 Repons Vet2 ch B4KE CLW File
-] Statements
-2 System
- Utilty
£ 244pr2008 lcons
-] 27Dec2007 -
<] | _'l_I <] I I
|14 object(z) I |2.44MB [Dizk free space: 3.45GE) |_§‘ fdy Computer A

Figure 3 — Files that Identify DLL app Modules and Procedures

When all “Default Program” cl

program: CLW2TPS, to read each of those clw and inc files and accumulate all of the

entire app’s proc

edures, Fig 4.

and inc files are conveniently gathered, run the

& Step #1. Capture Application CLW and INC file[s] procedure nams to TPS

Run this for each DLL application. The order is NOT important.

Reads application’s "Primary™ App.clw file then each of the app.inc file{s)
to get the procedure names, prototype and any comment into a tps file to
he used by AppProc to display your procedure calls and called by.

App Hame:

Set "Create" for the 1st app then "Append” for the remaining apps.

Source CLW:

(O]]

INC Hame

Short Date Time

Size |

| |

= Create (Append ‘

I~ m

.clw

ain App

I

App

Module | External| CLWINC

Procedures |

Module:

Procedure:
ProtoType:

Records:

20

Additions: 1]

Module

CLW Procedures |

Module

INC Procedures |

1444 « | 2

|

144 4| 2

Id[dd4] 4| F) k|rp|M

i

I

The resulting "AppProc.tps” file is central to ProcCall, step #2.

¥ e 0]

Quit

Set “Create” on the 1*' clw file read and “append” an all others. Order is not important.

Figure 4 — The CLW2TPS Program

6 December 2008

DRAFT

Page 3 of 14

Selzler Computing

DRAFT

CLW2TPS builds the file AppProc.tps identifying each procedure, their source app,
member module, name, prototype, whether it was local to this DLL or some external
DLL, whether it’s a Procedure or a Function and finally any comment. The 31 program,
AppProc Fig 6, allows viewing of this data and will be presented in more detail later in

“Who Calls Who”

this paper.
AppProc FILE,DRIVER('TOPSPEED'),PRE(APR),CREATE,BINDABLE,THREAD
pkAppProclD KEY(APR:AppProclD),NOCASE,OPT,PRIMARY
kApplication KEY(APR:Application,APR:ProcedureName),DUP,NOCASE
kModule KEY(APR:Module,APR:ProcedureName),DUP,NOCASE
kProcedureName KEY (APR:ProcedureName),DUP,NOCASE
Record RECORD,PRE()
AppProclD LONG
Application STRING(20)
Module STRING(20)
ProcedureName STRING(100)
FP STRING(1)
Prototype STRING(100)
External BYTE
Calls LONG
Called LONG The fields: Calls through Comment
ge";."te'-apt"p Egll'é were of interest to me and are not
ngs',?,lap LONG critical or even pertinent to this paper.
ModuleData STRING(1)
GlobalData STRING(1)
Comment STRING(250)

Figure 5 — AppProc.tps Dictionary

The comments contained information useful to me including my running indication of the
number of called procedures that was maintained manually during development. This
number was carefully accounted for but not necessarily trustworthy.

APPPROC is the program that presents the results of this capture but at this point it is
only beginning to become useful. The evaluated app’s procedures have been identified.

External procedures are shown in red and the prototypes have a “,DLL” suffix.

g Browse the AppProc file _ O]]
[SelectedApp Only [al Procedures =
[2pp [Module JFP] Procedure Name Frototype: | _Extemal [T
w5 P
85 P |E
F |Exp
w5003 | P |Exportwork
WB5003 | P |Exportworkltem
VESOO3 | P |ExportworkShars ||
WBFO03 | F |f_Zip_Zip_Distance [Sting String).Real
VEMOD2 | F |fgingReportdptions [*Byte,*Byte, Byte, "Byte “Bute *Byte “Byte(] "Long) Byte:
WEM002 | F |fAgingReportOptions 0 [*Byte,*Byte, “Byte. “Byte *Byte, "B te, “Byte(]) Bute
WBFO0Z | F |fanimaldgeText [Long),String
WaF F |fAnimaldgeT ext [Long) String DLL External
WaF F [fdnimalboeT ext [Long) String.OLL Extemal
WaF F [fnimaligeT et [Long) Sting,DLL Extemal
WaF F |fAnimaldgeT ext [Long) String DLL External
WEFODZ | F | fanimaldgey'sars [Long) Lang
WaF F [fnimaligeyears [Long) Long.DLL Extemal
WaF F |fAnimaldoeyears [Long).String DLL External
WEFODZ | F | fanimalClientLinkCount [Long) Lang
WaF013 F [fanimalKeywordSeaich [).5king
WaF F |fanimalKewiordS earch [).5ting DLL External
WaF F [fanimalKedwiondS earch [.5tina.DLL Extemnal
WaF00z F [fnimalName [Long) Sting
vBR WaF F [fnimalame [Long).String DLL External
4]z r(rm 4 >v|
Inzert Change Delete
1) Application | 2)Module. 3) Proceduretame [4]ApeProciD |
Close Help

Figure 6 — AppProc Program View of the AppProc.tps Data

6 December 2008

DRAFT

Page 4 of 14

Selzler Computing DRAFT “Who Calls Who”

Filters allow viewing: a) All b) External c) Local procedures.

At this stage, one only knows where local and external procedures are located, app and
module wise. Module names without numeric suffixes are external. This is pretty useful
by itself but to know what procedures were called by each procedure and additionally the
procedures that call that procedure would be even better. That’s where we’re headed

Each DLL development folder contains everything necessary to build that DLL, Fig 1.
The important files for this exercise are the generated clw files. The “Default Program”
un-numbered clw file doesn’t usually contain any generated procedures unless one has
put procedures in that module. I’'m guilty of moving procedures from module to module
for whatever perverse purpose seemed important at that moment so I am trying to not
assume on the practices of other developers.

Rather than bother to exclude processing that file, simply assume that someone might
place some procedures there and let these programs check. This minimizes manual
interaction to single out or exclude files for the following program,

The Big One! Parse the Code for Procedures They Call.

The PROCCALL program allows the user to evaluate either a selected clw file in the
folder of interest or all clw files sequentially.

N '
Exn - EEE]
Exptects “AppProc.tps”, created by CLYWW2TPS. Enter an APP's member CLW file {or all) to scan for “declared” and “generated” procedures. [~ Pause "> 1" OnLine |
Each procedures source line is scanned for a match with each of the APPs procedures o identify procedures called. Validity is checked. — Pause "Invalid" i
Process -
* SgICLW ALL CLWs App Name: lvﬂm— Source CLW: |[vBm006.clw SubProc file exists " Create < Append I/ LURLILE Eakie Quit
Procedure Being Scanned
Fame o] 5=] 0 Declared Procedures 11 Generated Procedures | | pyiclientDetailedTransactionsDate Found: 13 valid: 12
it
VaM.clw 08 | 83.456 11 of 11 [EENEENEENENNNNENNENENNENNNNNNENNENENN Line: 449 of 449 [EENENNENEENEENENEENEEEEEN
vBMOD1.clw | DBA| 5844
vBMODZ2.clw | 0B 1| 832,393 Declared Procedures Calls | Generated Procedures | Calls' \ -~ Scan Procedure Source for Procedures Called ~
vBMOD3.clw | DB A| 57,954 RptDiscountsOfferedByDatef 3 CODE
vBMODS.clw | 08 1| 56,290 fShowincompleteAddress [1] 1 Before record is printed
vﬂMﬂﬂﬁ-clw 08 A 175417 RptacctHistdSelectedMonthf 8 IF (WKS:ServiceDate => LStartDate) AND (WKS:ServiceDate <= kI
RptagedClientReceivables 15 IF (WKS:Transferred = 0) AND (WKS:Voided = 0)
RptClientAddressesincomple 3 :RecordNbr = WHS:WorkNbr
RptClientworkReceiptsActivi 10 y:ServiceDate = WHKS:ServiceDate
RptClientwWorkReceiptsctivi 11 qW_R =1
4 j RptClientwWorkReceiptsActivi 7 g:SharePercent = YWKS:SharePercent
RptClientDetailedTransactior 13 ADD (QueClient¥orkShare)
Display Folder Contents ~ END
" ALLfiles ¢ CLW Only END
Declared completed Generated completed Omit{EndOmit)
App Procedures Modu A Proc Called Module Line | Pos [# [Proc#] Invalid | | Returnvalue = PARENT.TakeRecord()
ASCIl_FileExportSelectig V8S0 fAnimalName V8F002 223 30 1 616 ! INFO: Just after Client record is printed...
AboutvVET2003 VET2 TPraviderName V8Fo05 224 301 767 IEndOmit
ActionExtractNewl apto] V8X0 TServiceProductDescriptior VBFOD6 233 48 1 7 RETURN ReturnVfalue
ActionMergeNewLaptop| V8X0 fServiceProductCode VBFO06 235 48 1 7t ThisReport.ValidateRecord PROCEDURE
ActionRefreshRemoteFr V8X0 TMapPaymentType VBFO07 251 3301 739 Returnvalue BYTE,AUTO
ActionTransferExtracteq V8X0 TFormatCityStateZip V8F003 272 24 1 684 CODE
AddCSVField V8s0 fCommunicationTypeName | V8F003 281 445 1 657 ReturnVfalue = PARENT.ValidateRecord()
AdjustWorkTrainerLoca Y8P0 fClientName VBFO03 203 M1 648 ! ReturnVfalue = Record:Filtered to suppress 1 record..
AgingAnalysis Vauo TValidateAccessLevelForSe VBF022 343 14 1 829 ! IF (WKS:SeniceDate => l:StartDate) AND (WKS:ServiceDate <=1:
AgingFieldValueSearch | VB8P0 fGetPracticeName V8FO05 364 241 688 ! Not fittered
BackupFiles2LocalDisk | VX0 SelectClient vapo11 367 15| 1 433 | Suffix ! ELSE
BrowseAccountAgingHis VEMC OptionRptSOAP VERO06 374 701 188 ! ReturnValue = Record:Filtered
Browseanimal VB8P0 fStartEndDates VBF012 375 14 1 794 5 END
BrowseAnimalShare | W8P0 RETURHN ReturnValue
BrowseAnimalShare_Cli VBFOI + 4 nEe
RETURN Returnifalue App Procedures NNNNNNNNNNNANNENRNNNNRRNENNRN 859

Figure 7 - ProcCall “Who Calls Who” Window.

Who calls me? 2 Me = WhodoI call?

6 December 2008 DRAFT Page 5 of 14

Selzler Computing DRAFT “Who Calls Who”

I recommend that one put a copy of the ProcCall program in each of the development
folders and choose to let it process all clw files. Each clw module file in the folder is
scanned line by line for “Declared” and “Generated” procedures. The directory list at the
upper left highlights the currently selected module file.

MEMBER('v8M.clw'") ! This is a MEMBER module

INCLUDE('ABBROWSE.INC'),ONCE
INCLUDE('ABPOPUP.INC'),ONCE
INCLUDE('ABTOOLBA.INC'),ONCE
INCLUDE('ABWINDOW.INC'),ONCE

MAP
INCLUDE('V8MO003.INC'),ONCE ILocal module procedure declarations
END

finsertNewClientAccountHistoryRecord PROCEDURE (pClientNbr,pStatement,plinterest) ! Decla&\
Procedure

r:Return BYTE
I:LogError STRING(50)
CODE
CLEAR(ACH:AccountHistoryNbr,1)
SET(ACH:pkAccountHistoryNbr,ACH:pkAccountHistoryNbr) Examples of
IF Access:AcctHist. PREVIOUS() = Level:Benign procedures found
ELI;(Exthk# = ACH:AccountHistoryNbr within the source
NextLink# = 0
END
ACH:AccountHistoryNbr = NextLink# + 1
ACH:ClientNbr = pClientNbr
ACH:StatementDate = pStatement
ACH:Balance = fSummAccountBalance (CLI:ClientNbr)
ACH:Current = CLI:Current
ACH:Aged_30Days = CLI:Accounts30
ACH:Aged_60Days = CLI:Accounts60
ACH:Aged_90Days = CLI:Accounts90
IF Access:AcctHist.INSERT() = Level:Benign

IF fConfigSetting (1) = Enable
LogTestMessage('AcctHist Record (‘& ACH:AccountHistoryNbr &') created.|' &|
'|Client: '& fClientName (pClientNbr))

END
r:Return = Success

ELSE
I:LogError = CLW{Error()) &', AH# ('& ACH:AccountHistoryNbr &'), C# (‘& pClientNbr &')'
LogVetErrors (I:LogError, 'AcctHist', Insert)

r:Return = Failure
END

... lots of code ...

ViewClientTrainers PROCEDURE (pClientNbr) ! Generated from procedure template - Window

|:ClientNbr LONG !
|:ClientName STRING(40) !
Window WINDOW('Client"s Trainers'),AT(,,217,165),FONT('MS Sans
Serif',8,,FONT:regular),SYSTEM,GRAY,DOUBLE,MDI
LIST,AT(8,18,201,120),USE(?List1),VSCROLL,FORMAT('160L(2)|M~Trainer
Name~C(0)@s40@56L(2)|M~Trainer Nbr~C(0)@n-14@'),FROM(QueClientTrainers)
BUTTON('Close'),AT(165,145,45,14),USE(?Close)
END
ThisWindow CLASS(WindowManager)

... lots more code ...
Figure 8 — Snippet of Module Code being Parsed for Procedures

6 December 2008 DRAFT Page 6 of 14

Selzler Computing DRAFT “Who Calls Who”

Each source line is parsed specifically for: “! Declare” marks the beginning of a series
of source lines that ends when either another “! Declare” or a “! Generated from”
occurs which is the beginning of another procedure and brackets procedure source within
the module being processed. The check is reversed to process generated procedures.

PROCCALL processes Declared procedures then Generated procedures as two separate
sequential passes of each source module. This choice was an arbitrary decision but doing
all of one then all of the other made coding a little simpler.

LOOP
NEXT(ApSource)
IF ErrorCode() = 33 THEN BREAK.
SourceData = APS:SourceData
IF SourceData =" THEN CYCLE.
CASE DeclaredGenerated
OF 1
IF INSTRING('! Declare Procedure',SourceData,1,1) > 0
ScanSourceline
I FoundProcedure. Start to fill the source eval queue
ELSE
IF INSTRING('! Generated from',SourceData,1,1) > 0
I Encountered the other "Type"

ScanSourceline
ELSE
I Fill_SourceQue
END
END

OF 2
IF INSTRING('! Generated from',SourceData,1,1) > 0

Figure 9 — Pseudo Code Snippet to Fill the Procedure Evaluation Queue

One couldn’t simply search for the word “Procedure” because Clarion generates a lot of
these as a part of the ABC method structure. I use ABC.

The source of each pertinent procedure, as encountered in the module, is placed in the
larger list, at right Fig 7. Then each line is parsed to look for each of the full app’s

identified procedures, contained in the AppProc.tps file created by the CLW2TPS
program identified in Fig 4. These procedures are shown at lower left of Fig 7.

LOOP Ji# = 2 TO Records(QueSource)
GET(QueSource,J#)
Sourceline = g3:Source
St#=1
LOOP K# = 1 TO Records(QueAppProc)
GET(QueAppProc,K#)
IF CLIP(g4:ProcName) = CLIP(CallingProcedure)
CYCLE
ELSE
IF g4:Encountered = 1 THEN Cycle.
I Subsequent lines could call the procedure again,
I don't care about these. Save some indicator that this
I procedure was already called by the calling procedure.
ProcedureStart = INSTRING(CLIP(g4:ProcName),SourceLine,1,S#)
IF ProcedureStart => 1
DO CheckNotInterested
END
END
END
END

Figure 10 — Pseudo Code Snippet to Scan Each Source Line for a Procedure

6 December 2008 DRAFT Page 7 of 14

Selzler Computing DRAFT “Who Calls Who”

Each source line in the list at right, Fig 7, is evaluated for all of the procedures present.
In my case that was 927 procedure names that were looked for.

Validity Checks.

Just parsing each line of the source for the existence of a string that matches the name of
one of the main apps many procedures isn’t sufficient. The following considerations are
checked for validity.

v Any procedure may call another many times but only one occurrence of any
called procedure is of interest. Subsequent usage is skipped.

v A “use variable” could have the same name as a procedure. I do that occasionally
as it facilitates internal documentation and code maintainability. So when
PROCCALL gets a procedure hit it checks the character immediately preceding
to see if itis a “?”. It notes the hit in the list at lower center but mark it “Use
Var”, declares this an invalid call and skips it.

v’ The procedure name could be part of a string constant. PROCCALL checks the
character immediately preceding to see if it is a “’ ”, notes the hit, marks it
“String”, declares this an invalid call and skips it.

v The procedure name could be after a “!” indicating it was part of a comment.
PROCCALL checks for the first occurrence of a “!” to see if that occurs at an
earlier line position than the procedure name hit. If so it notes the hit marks it
“Comment”, declares it an invalid call and skips the rest of the line.

It gets even trickier. I noticed some habits that I have that could lead to false hits. A
procedure name could be contained within another procedure name. It could have some
special prefix or suffix. It could be an argument for a CLIP(ProcName), START
(ProcName) or something else.

v" Consider:
o _ProcedureName
(ProcedureName < this is likely a legitimate hit.

o
o SomethingProcedureName
o ProcedureNameSomething

A SubProc.tps record is written for each called procedure identified.

SubProc FILE,DRIVER('TOPSPEED'),PRE(SPR),CREATE,BINDABLE,THREAD
pkSubProcID KEY(SPR:SubProcID),NOCASE,OPT,PRIMARY
fkProcedureCalled KEY(SPR:ProcedureCalled),DUP,NOCASE
fkCallingProcedure KEY(SPR:CallingProcedure),DUP,NOCASE
Record RECORD,PRE()

SubProcID LONG

ProcedureCalled STRING(100)
CalledProcedureModule STRING(20)
CountProceduresCallingMe LONG

CallingProcedure STRING(100)
CallingProcedureModule STRING(20)
CountProceduresCalledByMe LONG

Figure 11 — SubProc.tps Dictionary

6 December 2008 DRAFT Page 8 of 14

Selzler Computing

DRAFT

“Who Calls Who”

Each “declared” procedure processed is identified in the list immediately at the right of
the App’s module list. Then, serially, each “generated” procedure is processed. These
procedures are shown in the list at the right of the “declared” list as they are processed.
Any identified procedures parsed from the source lines are shown in the list below the
declared and generated procedure lists, bottom center of Fig 7.

Results Summary Upon Completion

When done a Results
summary is presented.

Mostly this is a signal of
completion The AppProc
program allows the user to
view this data whenever they

wish.

RptDiscountsOfferedDateRange
RptDiscountsOfferedDateRange
RptDiscountsOfferedDateRange
RptDiscountsOfieredDateRange
RptDiscountsOferedDateRange
RptDistountsOfieredDateRange
RptDiscountsOfferedByDateRange
RptDiscountsOfferedByDateRange
RptDiscountsOfieredByDateRange
RptDiscountsOfieredByDateRange
fShowincompleteAddress

RptacctHistd SelectedMonthBilling Status
RptAcctHistdSelectedMonthBillingStatus
RptAcctHistdSelecteddanthBillingStatus
RptAcctHistdSelectedMaonthBilling Status
RptAcctHistdSelectedMaonthBilling Status
RptacctHistdSelectedMonthBillingStatus
RptAcctHistdSelectedMonthBillingStatus
RptAcctHistdSelecteddanthBillingStatus
RptAcctHistdSelectedMaonthBilling Status
RptagedClientReceivables
RptigedClientReceivables

14 44] 4| 2| F | FH M

A xJ|
Calling Procedure Called Procedure [
‘WorkExceptionReports
VWorkExceptionReports LowestWarkSeguenceMumberdDate

fWalidateAccessLevelForSelectedFunction
fGetPracticeMame

fEtanEndDates

MlapClientStatusAffect
MapClientBillingStatus

fGetPracticeMame
fStanEndDates
fSummAccountBalance

fLastClientPaymeniDate

TLastClientP aymentamount
fLastClientorkDate
fLastClientyarkAmount
fCommunicationTypeMame
fWalidateAccessLevelForSelectedFunction
HistoricalAgingReportOptions
fGetPracticelarne

fLastClientPaymeniDate

Figure 12 — AppProc Completion Summary

Optional Text file

I +8C003.chw.txt - Notepad

EIBX

6 December 2008

Eieocged;urFirsmaéa'%::d t'|:r|"pom: VBCO03. clw —— 7/08/2008 —- 1:55PM An Optlonal ASCII teXt flle
may be produced for what use
;';"P:Edirej I that may provide. See the
et_mrhonevendornbr —- « .

set_mrhonevendorType -- wBC003 Create TCXt Fﬂe” CheCk bOX
_____ cemeratod oo at the upper right of fig 7.
BrowseInsuranceplans -- w8C003

(VBFOOD) feheck4Laptopoperatian If aCtiVated, these are

CWBFOOD] cChecklaptopFiledEditsallowed automatically named after the

(WBCO03) UpdateInsuranceplan module. Eg Module

(wBC003) Updatevendorrhone

(VBFO227 fwvalidateaccessLevelForselectedFunction V8m002.CIW WOUld have a text

(VBC003) RptInsurancerrovidertames flle named V8m002'CIW'tXt

(vsF003) - Frormatrostcode which can be viewed by any
BrowseLabpProviders VBCO03 text editor.

CVEFO0S) ficheckdLaptopoperation

(VBFOOG) CheckLaptopFiledEditsallowed Called procedures’ lf any’ are

(/80030 == UpdameLsbrrovider shown indented following the

(VBC003) UpdateLabaniml .

(WBC003) Updatevendorrhone Calhng procedure'

Figure 13 — Optional Text File Summary

DRAFT

Page 9 of 14

Selzler Computing DRAFT “Who Calls Who”

DLL Hierarchy Considerations

As each DLL app is compiled and export files are created, successive DLL apps will be
dependent on their awareness of defined exported procedures. Running PROCCALL
isn’t sensitive to this order. However if you run it in each of the respective development
folders, the resulting SubProc.tps file will need to be copied to the folder to be processed
next so that that folders procedures can be appended to that growing file.

Use APPPROC to Review it All.

AppProc app, first introduced in Fig 6 is now more useful because of all the SubProc data
accumulated by ProcCall, Fig 14.

9 ipplication Procedures {:]@\E\
Ele Edi Browse Reports Window Help

Apps Procedures | F‘mceduresEaHed| Ealllr\ngcedures| Scan Protatypes |

& Procedures Called (“Who do | call?”) CEEX

Fier i o i
I T—— o T o [Coled Priry " Calloa Py [SaHEd erflok]

M3 -
I Selscted Module | SubPioe ProcedweCaled [iat] ka) FiaimalShareCount
I Onp Procedures Caling " piorly Maphnimaloes 7] a({Clieritlame

fibrimalgeT ext iMapednimalEffective
T i apy derificationType PreferenceDefaulNewbninal

fiapdinimalStatusdfiect finsenNewdnimalClientShaieRs
VERO03 fLastbrimaiforkDiate Logh/etErmars
VET2001 fClientt ame [Check4LsptopDperation
VER002 fProviderN ame LogLaptopéations
VEx002 fLocationhlame finserth evrimalClientLink R
VED0Z frimalT otalSharePercent fLastnimalworkD st
VEADOZ fTotalShareColor fConfimL aptopE diD elete/asl]
VBS003 fTatalbrimati/orkamount [ConfigSetting
VBPOO2 fCheckdLaptopOiperation fRiemoteL aptophumber

FiledE ditcslowed 2 |8 LogWetFileE dits

AppProc - Caling Froceduie Friorty]_Module [Codh &
Oplion_SenviceGroup_Chronologicalodesuty 7
RptwiarkEyS erviceProductGroupS erviceDate
EboulET2003

‘ActionE dractlewLaptopRieconds
ActionMergetewl aptopRiecards
ActionRefieshRemoteFromMain

‘ActionT ransterE tractedRemoteDatazkain
AJACSVField

Adjustiark TrainerLocation

Aginghnalysis

AgingFisldValusSearch

ASCII_FileE rporSelection
BackupFiles2LacalDisk
BrowsehccountAgingHistor

[pd: ENIN: {CunentUseiNumber
Upda Share SelectClient
UnpdateAnimalStatus SelectProvider
UpdateAnimalSurgery SelectLocation
UpdateYacinate SelectBreed
UpdateAnimallnsurance BrowseSelectedAnimalShares
UpdateLabaniml IAnimaligeT ext

fAnimalk epwordS earch ~ | |DetemineBithdateFromage:
fConfigSetting IEnimalT otalSharePercent
fDemoRecordExeeded CountReminders_Selectedanin
Malidateccessl evelF orSelectedF unction RemoveReminders_E uthanasiz
SelectClent -
SelectLocation

SelectBreed

ViswClienthccounthging
BrowseDrivaDirections_SelectedClisnt
RiptAnimalSharesN ot 00Percent
BrowseS electedAnmalShares
ViewSpecificWorkSOAP
Rptw/orkdSelecteddnimalServiceD ate
ViewScannedLabFulcreen
RptanimallabScannedimage
fCompare&nimal5hare2ClientLinkCount
LogVelEnars

VEROI2 falidatetnimal3harePercentage

IS etCliertLink24nimalShare
Lieleal ol 2] v [pe] 0] ?| || RptCambinesnimalFromChildren

Protatype| [RIEAEI D]

BrowseAnimal_EIP
BrowseAnimal_Share.ClientLink_Debug
BrowseAnimals hare
Browsednimal3hare_ClentLink_4&nimal
Erowsetnimals tatusByAnimal
BrowsetnimalS tatusBySiatus
Erowsehnimaluigerics
BrowselnimalT ree

BrowseBiced

BrowseBusiness

BrawseClanLink
BrawseClonLink_SelectedClient
BrowseClient

BrowseClient_EIP

BromseClientAltAdr
BrowseClientClientRelstionships
BrowseClientDiscountsOffersd
BrowseClientDriveDirections
BrowseClientE Mail

BrowseClientPhone

00 0 L0 C0 L0 €O (B 2 LD 9 4D 4D D D 1 G2 GO O [£ £ €3 CR 4D G G e e

Browsing Flecards

Figure 14 — AppProc “Who do I Call.”

Each procedure, left, presents all of the procedures that it calls, center, and they in turn
show (if you are interested) the procedures that they call, right. Unlike the procedure tree
view in the IDE, the repetition stops at that level. Each of these three lists present their
source module and their DLL priority. The lower the priority number the more
fundamental the DLL placement.

Procedures are intended to call external procedures equal or lower priority levels. If a
procedure calls another with a higher priority number it is presented in red and should be

considered to be moved to a DLL with a higher priority number.

The list at the lower right simply reminds of your DLL hierarchy.

6 December 2008 DRAFT Page 10 of 14

Selzler Computing DRAFT “Who Calls Who”

k) Application Procedures
Eile Edit Browse Reports window Help

e w—— | PrucedulesEaHedJ Eallingpmcedules‘ X e p— ‘

9 Calling Procedures (*Who calls me?”) Elﬁwg‘
Filter

[~ Selected App I Selected Module Calling Pracedure Prionity] Module |3 Called By M:\
T apAnimals hareT ype VBFO0Z
[Comp i ClientLinkCount WEFOD4
fhapdni ype WEFOD2
[ComparednimalS hare2ClientLink Count WBFOD4
RptanimalT rainerClient WBRO0Z
Rptw/orkTrainesdnimalCient_DateRanged YERO0S
A nimal? hareshot] D0Percent YEPO03

E] 10

|
By
2

Procedus Mame Prorit]_Moduls

Distrbute ork 2Muliplernimals_B VELDDS
EnableDisableConfigetting EFDDS
EndCSVResord a5003
Erportanimal Ya5003
ErportéinimalShare ¥a5003
ErportBreed ES003
ExportClient VES003
EportClientPhone a5003
Erportfiecsipts a5003
ErportServiosProduct ¥E5003
ErportSpecies yES003
Erportwiork YES003
Erportworkliem a5003
ErportworkShars a5003
{ Zip_Zip_Distance YEFOD3
{AgingFieporOptions yiEMa0z
tAgingRiepartDptians_0 waMa0z
tAnimalbgeT ert YEFOD2
{Animalbgeears YaFOD2
{AnimalClientLinkCount EFDDZ
{Animalk epwordSearch EFDT3
tAnimalN ame YEFO02
2

)
fanimalsLocation WEFO02
[AnimalStatusy/alue WEFO02
tAnimal5tatushe aming WBFOn2
tAnimalsT rainer WBFan2

MMM Ag MM MMM MM MM T T T O T T T TN T T U0,

IR RN IO

Prototype: [Long,Long],Long IRTER RN

Browsing Records

Figure 15 — AppProc “Who Calls Me.”

Who calls me presents the SubProc.tps data in reverse. I think it is of less value but
interesting never the less.

9 Application Procedures
Flz Edi Erowse Reports Window Help

Agps Procedures | Procedures Called | Caling Proceduees | Scan Protagpes |

4 Scan all procedures for consistent external prototypes

Procedure Module Prototype [Cape [wodule [Ex] Pratotype
WignorkCalldSelectedwark WBPO07 iLong) val | vBu0o2 0
Wiewiorkltemimage_Large YEPOD7 | (Long,Byte)

Wiewiorkltemimage_Small YBPOD7 | (Long,Byte)

WiewitorkdtemimageList YBPOOT | (Long)

WiewiarkOrdersheet WBPODS
WiewiorkOrderSheet YEP
WiewiorkReceipts1 2Month vBU0z2
WiewdvorkReceipts1 2Month Wal
WignNorkTransferToOverride VBunos Lonay

Waming_UnDeletedTransferredData YBX0OG | (Byte)

Warning_UnExtractedData Wax005 (Byte) Error Presentation Filters
Waming_UnMergedDala VX0 | (Bte) [~ Show All Differences e
Warning_UnTransferredData Wax00s (Byte)

wWorkExceptionReports YEMDOB ¥ Consider Spaces

BU002 v Consider Case

Jz Scan ‘ Print Errars ‘

WorkSummary Total Inconsistent: 71

wi i Module Correct Prototype App_| Module Inconsistent Prototype Space Case |:
CreditBalanceCalor VEFD03 | (Real), Long VBF | VBF (Real),Long Smaller York
fCurrentHighestRank VBFD18 | (Long),Long vBR |vEF (long),Long Case
fingerthevanimalClientlinkRecord WAFO04 | (Long,Long), Byte val | VBF (Long Long) Byte Smaller Work
finge thewAnimalClisntLinkRecard VEFD04 | (Long,Long), Byte vBP |VEF (Long,Long), Byte Srnaller Work
finsertNewAnimalClientShareRecord Y8FO04 | (Long,Long*Decimal,Long), Byle | vBU | VEF (Long,Long,*Decimal Long) Byle Smaller Work
finsertNewAnimalClientShareRecord vaF004 | (Long,Lonp*Decimal,Long), Byle | vBP | VBF (Long,Long,*Decimal Long),Byle Smaller Work
fingerthewidorkClientShareRecord WAFO15 | (Long,Long Long Real),Byte val | VaF (lang,Long,Lang,Real) Byte Case
fLastClientPaymentDate VEFDO0S | (Long),Long v8C |VEF (Long,Long) ERROR
MapanimalShareType Y8F002 | (Long,Long),String v8S |VBF (Byte), String ERRCR
MapClientType YaFoo7 | (ULong),Siring vBG |VaF (Byte), String ERROR
MapDiagnosticTestSpecimen WAFOOT | (Byte) String v8s |Ver (Byte, String) ERROR
PasehapMinimumaAccessLevel VBFO0S | (Long), Lang veX | VEF (Lang),Long Srmaller work
fPassMapMinimumAccessLevel ¥8FO05 | (Lona). Lona v88 VBF (Long).Long Smaller Work

DI R TR |

Other than being wrong, the "extemal® prototype may he noted due to: (4) Spacing or (B) Case differences. These are notwrong but rather note keyhoarding inconsistencies

Figure 16 — AppProc Scan Prototypes for Inconsistencies
As one can quickly see from the large number of member procedures, it becomes tedious

to visually check all of them for prototype data entry errors. So I created a scan, Fig 16,
to find them and then got a little carried away to suit some of my coding conventions

6 December 2008 DRAFT Page 11 of 14

Selzler Computing

DRAFT

“Who Calls Who”

= Report Preview

Eile View Zoom

CEX

| M|] pege

Set 2zoom to standard or user defined value

Across: | [Zoom: [100% Zoam []
Py
Report Error Que
Procedure App Module Prototype
fAnimalAgeYears wBF WVEFoo2 [Lang).Lang
ERROR - wBl WaF [Lang].String
fAnimalShareCount wBF VEFOD4 [Long.Long) Long
ERROR -» vaC WEF [Long).Long
FAnimalStatusWalue wBF VEF002 [Lang) Byte
ERROR - vBP WBF [Lang).String
fCalendar wBF VEFO2 [Long). Long
Swaller War, - vBR VaF [Long).Long
fCalendar vBF WVEFI2 [Long), Long
Smalfer War, - -t WaF [Long).Long
fCalendar wBF VEF2 [Lang), Lang
Smalter War, -~ vBC War [Lang].Long
fCalendar wBF WVEFD12 [Long). Long
Swaller War, - wBM VaF [Long).Long
fCalendar vBF VEFI2 [Long), Long
Smatfer War, - vl VaF [Long).Long
fCalendar wBF VBFz2 [Lang), Lang
Smalter War, -~ vBFP War [Lang].Long
fCheck4ExistingSOAP wBF VEFO18 [Long).Byte
ERROR -» vBP VBF [Long).5ting
fCheckAnimalShareEffective vBF VEFOD4 [Long Long.Long] Byte
Case - v WaF [LOng.Long Long) Byte
FCompareAnimalShare2ClientLink Count wBF WEFOo4 [Long.Lang). Byte
Smaller War, - vBC WaF [Long Long) Byte 3

i s e
Page 1 of 4 Zoom: 100

Figure 17 — Report of the Prototype Inconsistencies Encountered

The following enlarged snippet from the report, Fig 17, illustrates a little clearer, the
comparisons being checked for inconsistencies. Besides looking for prototype content
errors in the external lib modules, I like to retain some typographical conventions. The
two that I check for here are font “case” and inconsistent placement of “spaces”.

fCalendar
Smalier Wor
fCheck4ExistingSOAP
ERROR
fCheckAnimalShareEffective
Case

-3

-3

-

wBF
wBP

vaF
vBP

vBF
wBbd

YR 2 [Lang). Long vi
WaF [Long).Lang
EEEE [Long).Byte
WaF [Laorg).String
WaFO0d [Long.Long Long) Eyte
WaF [LOng.Long Long) Byte
.

Figure 18 — Enlarged, Focused Example of Inconsistency Report

Different font “case”

Inconsistent “spacing”

These are likely not errors (although spaces could be) but rather fussiness on my part.
Prototype typing errors, however, can illicit error messages that are cryptic at best.

Selzler's Vet2007 -- SELZLER COMPUTING: Vet2.exe - Application Error

Q

Click on QK ko terminate the program

The instruction at "0x0800b430" referenced memary at "0:3c0800b4", The memory could not be "read”.

Figure 19 — A Cryptic Error from the Vet8 app being analyzed.

6 December 2008

DRAFT

Page 12 of 14

Selzler Computing DRAFT “Who Calls Who”

I was presented with the one in Fig 19 that stymied me for awhile until I decided to check
some prototype definitions.

7 Procedure fCheck4ExistingSOAP Properties 75 Procedure fCheckd ExistingSOAP Properties

Procedure Mame: fCheckdE=istingSOAP V,_ Procedure Names: (CheckdE HstingSOAP :
Template: Source[ABC) Template: S |
oot W J f— Dezcription: |[Lung],5tring J _=
Cateqgory: [2

Frotatype: [[Long] Byte Categary: |

hodule Name: [+EF 018 chw =\ v Pratatype: [[Long].5ting —

IE e Pre todule Mame: [++&F lib = | —

[~ Declars Globally — |_ E:.:pmt pmcedu[e Prc

Parameters: [[porkMEn) ‘V/_E [Declare Globally —

Source properties : : F E

M Crcmr—ta M W lmrm il Om abiemn |
Correct source procedure prototype. Incorrect external protptype.

Figure 20 — Comparison of Correct and Incorrect Prototype Definitions.

After creating this check I found a few more errors, which I may or may not have
otherwise found or worse a client may call with a message that would have taken a long
time for me to find. You all know how clear user descriptions of what they were doing
just before an error is presented: “I didn’t do any thing wrong!”

Some Code References

On 8 May 2008, I posted: “Curious about many DLL’s” to the comp.lang.clarion
newsgroup and Maartin responded with a link http://www.softprohk.nl/ReadProc.zip
to a program that he had developed. His program is a very useful presentation and the
work presented in here is an evolutionary outgrowth of his work. Thank you Maartin.

Note (Dave), not to be part of this paper: Is this legitimate to refer to in this paper?
Perhaps I should offer a copy of all of this to him. I wish to give credit to where credit is
due.

Summary

These programs are prototypes written using CW 6.3EE that I wrote for myself but I
suspect that other Clarion developers might find them or pieces of them useful as their
app’s are broken into DLLs. The first two are hand coded. The third was a template app.
Another use may facilitate internal development documentation. I usually write some
booklets to serve as maps to my apps. User documentation may be served as well but the

detail is probably more than the typical user would ever care to look at.

See the companion paper that uses the DIl Tutor example provided by Soft Velocity.

6 December 2008 DRAFT Page 13 of 14

Selzler Computing DRAFT “Who Calls Who”

About Me

I grew up in a wide spot in the road in North Dakota, got a degree in aeronautical
engineering from the University of Washington and had a real small part putting Neal
Armstrong and Buzz Aldrin on the moon. I’ve built control software for a chemical laser
in assembler and was project engineer responsible for the I/O portion of an operating
system for an AN/UYK (PDP-11) for a Marine Corps battlefield computer while at TRW.
I consulted to Raytheon on the Patriot missile.

In 1982 I started my own company, Selzler Computing, to write software for equine
veterinarians. That first program was written on and for a dual floppy TRS 80.
Remember that one? I’ve built a physician Electronic Medical Record package in
CW2.003 and have been using Clarion since version 1 for Windows. My family and I
live in Longmont, Colorado.

6 December 2008 DRAFT Page 14 of 14

